Caffeine regulates neuronal expression of the dopamine 2 receptor gene.
نویسندگان
چکیده
The psychoactive drug caffeine influences neuronal physiology; however, it is unknown whether it can dynamically alter the expression of genes that influence neurotransmission. Here, we report that caffeine stimulates transcription of the dopamine 2 receptor (D2R) gene in PC-12 cells and primary striatal cultures and increases D2R protein expression in the striatum. Physiological doses of caffeine and the specific adenosine 2A receptor antagonist 8-(3-chlorostyryl) caffeine both increased the activity of a D2R/luciferase reporter construct within 24 h, and simultaneous treatment with 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680), a specific adenosine 2A receptor agonist, eliminated this effect. Tests of additional constructs revealed that specific regions of the D2R promoter (-117/-75) and 5'-untranslated region (+22/+317) were required for activation of D2R gene expression by caffeine. In primary striatal cultures, caffeine increased spontaneous firing of neurons between 12 and 80 min after treatment, whereas it increased D2R mRNA expression after only 4 h. These results indicate that regulation of D2R gene expression by caffeine occurs after the initial physiological response has subsided. In vivo, female mice treated with a dose of caffeine (50 mg/kg) showed 1.94- and 2.07-fold increases in D2R mRNA and protein expression, respectively. In contrast, male mice exhibited a 31% decrease in D2R mRNA expression and showed no changes in D2R protein expression. Collectively, these results demonstrate for the first time that caffeine alters D2R expression in neurons. They also suggest that caffeine consumption can lead to sexually dimorphic patterns of gene expression in the brain.
منابع مشابه
P-231: Androgen Receptor Gene Expression in Azoospermia Men
Background: Androgens are critical steroid hormones in progression of spermatogenesis process and determine the male phenotype that their actions are mediated by the androgen receptor (AR), a member of the nuclear receptor superfamily. In the Androgen receptor, transactivation domain encoded by exon 1, DNA binding domain encoded by exons 2 and 3, hinge region encoded by part of exon 4, and C-te...
متن کاملStudy of Dopamine Receptor Gene Polymorphisms and Their Association with Growth and Egg Production Traits in West Azerbaijan Native Chicken
The objective of this study was to search for single nucleotide polymorphism (SNP)-type polymorphisms in the dopamine D1 receptor in West Azerbaijani native chicken and look for their association with egg production and body weight traits of chickens by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). For this purpose 180 blood samples were taken from nativ...
متن کاملmiR-33-5p Regulates CREB to Induce Morphine State-dependent Memory in Rats: Interaction with µ Opioid Receptor
The aim of the present study was to examine the hypothesis that miR-33-5p attenuates morphine state-dependent (StD) memory via the µ opioid receptor by regulating cyclic AMP response element-binding protein (CREB). The effects of post-training morphine and morphine StD memory and their interaction with pre-test naloxone were evaluated using a single-trial inhibitory avoidance paradigm. Then, th...
متن کاملThe Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice
In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...
متن کاملDrosophila D1 dopamine receptor mediates caffeine-induced arousal.
The arousing and motor-activating effects of psychostimulants are mediated by multiple systems. In Drosophila, dopaminergic transmission is involved in mediating the arousing effects of methamphetamine, although the neuronal mechanisms of caffeine (CAFF)-induced wakefulness remain unexplored. Here, we show that in Drosophila, as in mammals, the wake-promoting effect of CAFF involves both the ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 64 6 شماره
صفحات -
تاریخ انتشار 2003